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Background: Impaired intestinal barrier integrity plays a crucial role in the development of
many diseases such as obesity, inflammatory bowel disease, and type 2 diabetes. Thus,
protecting the intestinal barrier from pathological disruption is of great significance.
Tryptophan can increase gut barrier integrity, enhance intestinal absorption, and
decrease intestinal inflammation. However, the mechanism of tryptophan in decreasing
intestinal barrier damage and inflammatory response remains largely unknown. The
objective of this study was to test the hypothesis that tryptophan can enhance
intestinal epithelial barrier integrity and decrease inflammatory response mediated by
the calcium-sensing receptor (CaSR)/Ras-related C3 botulinum toxin substrate 1 (Rac1)/
phospholipase Cg1 (PLC-g1) signaling pathway.

Methods: IPEC-J2 cells were treated with or without enterotoxigenic Escherichia coli
(ETEC) K88 in the absence or presence of tryptophan, CaSR inhibitor (NPS-2143), wild-
type CaSR overexpression (pcDNA3.1-CaSR-WT), Rac1-siRNA, and PLC-g1-siRNA.

Results: The results showed that ETEC K88 decreased the protein concentration of
occludin, zonula occludens-1 (ZO-1), claudin-1, CaSR, total Rac1, Rho family member 1 of
porcine GTP-binding protein (GTP-rac1), phosphorylated phospholipase Cg1 (p-PLC-g1),
and inositol triphosphate (IP3); suppressed the transepithelial electrical resistance (TEER); and
enhanced the permeability of FITC-dextran compared with the control group. Compared with
the control group, 0.7 mM tryptophan increased the protein concentration of CaSR, total
Rac1, GTP-rac1, p-PLC-g1, ZO-1, claudin-1, occludin, and IP3; elevated the TEER; and
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decreased the permeability of FITC-dextran and contents of interleukin-8 (IL-8) and TNF-a.
However, 0.7 mM tryptophan+ETEC K88 reversed the effects induced by 0.7 mM tryptophan
alone. Rac1-siRNA+tryptophan+ETEC K88 or PLC-g1-siRNA+tryptophan+ETEC K88
reduced the TEER, increased the permeability of FITC-dextran, and improved the contents
of IL-8 and TNF-a compared with tryptophan+ETEC K88. NPS2143+tryptophan+ETEC K88
decreased the TEER and the protein concentration of CaSR, total Rac1, GTP-rac1, p-PLC-
g1, ZO-1, claudin-1, occludin, and IP3; increased the permeability of FITC-dextran; and
improved the contents of IL-8 and TNF-a compared with tryptophan+ETEC K88. pcDNA3.1-
CaSR-WT+Rac1-siRNA+ETEC K88 and pcDNA3.1-CaSR-WT+PLC-g1-siRNA+ETEC K88
decreased the TEER and enhanced the permeability in porcine intestine epithelial cells
compared with pcDNA3.1-CaSR-WT+ETEC K88.

Conclusion: Tryptophan can improve intestinal epithelial barrier integrity and decrease
inflammatory response through the CaSR/Rac1/PLC-g1 signaling pathway.

Keywords:Q6 tryptophan, inflammatory response, intestinal tight junctions, intestinal permeability, CaSR/Rac1/PLC-g1
signaling pathway

INTRODUCTIONQ8

Enterotoxigenic Escherichia coli (ETEC) invasion causes
intestinal damage and diarrhea in children and young animals.
Piglets are inclined to ETEC K88-induced diarrhea because the
bacteria can produce enterotoxins. These substances destroy the
intestinal mucosal layer and tight junction (TJ) structure, which
increases the permeability of the intestine, ultimately causing
intestinal inflammation (1–4). ETEC K88-induced diarrhea can
lead to great economic loss in the pig industry (1–4). ETEC K88
can modulate epithelium barrier function by inducing cellular
signals such as the toll-like receptors (TLR) and p38/mitogen-
activated protein kinase (MAPK) signaling pathway in intestinal
epithelial cells (5, 6). Pathogenic ETEC K88 can activate innate
immunity and induce inflammatory reactions through the
nuclear factor kappa-B (NF-kQ11 B), TLR4, and MAPK signaling
pathways (7–9).

Tryptophan, one of the functional amino acids, has been
reported to improve the growth, decrease stress-induced injury,
improve appetite and mitochondrial function, enhance antioxidant
status, increase immunity, enhance the diversity of the intestinal
microbiome, change anabolism, and improve intestinal wound
restitution in animals (10–16). In particular, tryptophan plays
a vital role in protecting intestinal integrity by regulating
the expression of TJ proteins (17–19). The transepithelial
electrical resistance (TEER) and permeability reflect the integrity
and function of the intestinal epithelium layer and are utilized to
evaluate pathogenic microorganisms’ challenges (18). Nevertheless,
the effects of tryptophan supplementation on intestinal TEER and
permeability in ETEC K88-induced intestinal epithelial cells have
not been investigated. Lack of tryptophan can change the gut
microbial ecosystem and lead to intestinal inflammation (20).
Additionally, tryptophan supplementation reduces the mRNA
levels of proinflammatory cytokines interleukin-8 (IL-8) and IL-
1b in the gut (21). However, the exact molecular mechanisms by
which tryptophan contributes to intestinal barrier integrity and

inflammation response of intestinal epithel ial cel ls
remain unknown.

The calcium-sensing receptor (CaSR) plays critical roles in
the regulation of intestinal inflammation, intestinal epithelium
restitution, and intestinal TJ protein expression (21–24).
Tryptophan induces the activation of CaSR, which decreases
the mRNA levels of proinflammatory cytokines IL-8 and IL-1b
in piglets, suggesting that the CaSR signaling pathway may be
involved in intestinal inflammatory response (21, 25). A research
in mice reported that the suppression of CaSR could improve
FITC-conjugated dextran and decrease the TEER in the intestine
(26). CaSR overexpression can enhance IPEC-J2 cell migration
(24). CaSR stimulation increased zonula occludens-1 (ZO-1) and
F-actin-binding protein interaction in Madin–Darby canine
kidney (MDCK) cells (27). However, whether tryptophan
influences intestinal barrier permeability and TJ proteins
through CaSR signaling remains unknown. The activation of
CaSR results in the activation of Ras-related C3 botulinum toxin
substrate 1 (Rac1) and phosphorylation of phospholipase Cg1
(PLC-g1), which are involved in inflammatory response and
intestinal epithelial cell migration (24, 28–30).

Rac is a key target that modulates the permeability of
paracellular pathways (31). Rac1 is required for TJ barrier
during epithel ia l junct ion assembly and intest inal
inflammatory response (28). In mouse studies, CaSR inhibition
prevents the protein expression of Rac/Cdc42 and claudin-1,
claudin-4, and claudin-5 (32). Compared with pcDNA3.1
(+)-pCaSR, pcDNA3.1(+)-pCaSR+Rac1-siRNA significantly
decreased cell migration (24). However, whether the CaSR/
Rac1 signaling pathway is involved in tryptophan-influenced
inflammatory response, intestinal TJ expression, TEER, and
permeability of intestinal cells remains unknown. PLC-g1 is
involved in regulating intestinal inflammation, epithelial TJ,
and permeability (33, 34). Compared with pcDNA3.1
(+)-pCaSR, pcDNA3.1(+)-pCaSR+PLC-g1-siRNA significantly
decreased cell migration (24). However, whether PLC-g1 is
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involved in the mechanism of tryptophan in modulating
intestinal inflammation, TJ, and permeability via CaSR
signaling in intestinal cells is unclear. Our previous reports
showed that tryptophan increased intestinal epithelial cell
migration though the CaSR/Rac1/PLC-g1 signaling pathway
(24). However, whether tryptophan modulates intestinal
inflammation, TJ, and permeability though the CaSR/Rac1/
PLC-g1 signaling pathway after challenge with ETEC K88
remains unknown. This study aimed to test the hypothesis that
tryptophan can enhance intestinal epithelial barrier integrity and
reduce inflammatory response mediated by the CaSR/Rac1/PLC-
g1 signaling pathway.

MATERIALS AND METHODS

Materials
Tryptophan (≥99%, #T8941) and FITC-dextran 4kDa (FD4,
#BCCC6414) were purchased from the Sigma-Aldrich (MO,
USA). Dulbecco’s Modified Eagle Medium : Nutrient Mixture
F-12 (DMEM/F12, #C11330500BT), fetal bovine serum (FBS,
#10099141C), penicillin/streptomycin (S/P, #15140122), and
trypsin (#25200-056) were purchased from Gibco (USA). CaSR
inhibitor NPS2143 (#S2633) was purchased from Selleck
(Houston, USA). LipofectAMINE 3000 (#2304049) was
purchased from Invitrogen (Carlbad, CA, USA). Escherichia
coli K88 (ETEC: serotype O149:K91: K88ac) was purchased
from the China Institute of Veterinary Drugs Control (Beijing,
China). IPEC-J2 cells was preserved in our lab.

Bacterial Strains and Culture
Escherichia coli K88 was cultured in 10 mL of sterilized (121°C,
0.11 MPa for 20 min) Luria–Bertani (LB) medium (peptone, 1 g;
NaCl, 1 g; yeast extract, 0.5 g; double-distilled water, 100 mL)
overnight under shaking at a speed of 200 rpm at 37°C. About 100
mL of the bacterial solution was resuspended with 5 mL of
sterilized LB medium and shaken at a speed of 250 rpm at 37°C
for 2 h (35). Bacterial concentrations were determined from
standard curves generated by multiplicity of infection. IPEC-J2
cells were washed with sterile phosphate buffered saline (PBS),
which was replaced with 2% FBS medium without antibiotics.
Then, the cells were incubated with ETEC K88 (1 × 108 CFU/mL)
for 2 h. The selection of this serotype of ETEC K88 was based on
previous study (35).

Cell Culture
IPEC-J2 cells were cultured in DMEM/F12 supplemented with
10% FBS and 100 IU/mL penicillin/100 mg/mL streptomycin at
37°C with 5% CO2 atmosphere.

Small Interfering RNA (siRNA) and
Plasmid Transfection
The siRNAs directed specifically against PLC-g1 and Rac1 were
designed on the basis of the sequence of PLC-g1 (GenBank
accession no. NM_021078391.1) and Rac1 (GenBank accession
no. NM_001243585.1). The sequences of siRNAs [PLC-g1-

siRNA, Rac1-siRNA, and negative control siRNA (NC-siRNA)]
are listed in Table 1. NC-siRNA was used as the control. siRNAs
were synthesized and obtained from Gene Pharma (Shanghai,
China). siRNAs were dissolved in DPEC water to obtain the final
concentration of 50 nM. CaSR overexpression plasmids
(pcDNA3.1-CaSR) and pcDNA3.1+ were synthesized and
purchased from Youbio Biotechnology Co., Ltd. (Changsha,
China). Lipofectamine 3000 was used to transfect IPEC-J2 cells
according to the manufacturer’s instructions.

Cell Treatment
The IPEC-J2 cells (1 × 106 cells/mL) were seeded in 6-well Costar
plates (Corning, New York, USA) and incubated with 10% FBS
medium. The cells were treated as follows: (1) When the cells
reached approximately 70% confluence, they were incubated
in FBS-free medium for 6 h. Then, they were treated with 0.3 or
0.7 mM tryptophan in 2% FBS medium for 48 h, followed by
ETEC K88 for 2 h in 2% FBS medium without antibiotics. (2) The
cells were pre-incubated with NPS2143 for 1 h, followed by 0.7
mM tryptophan for 48 h, and then they were treated with ETEC
K88 for 2 h in 2% FBS medium without antibiotics. (3) The IPEC-
J2 cells were transfected with 1.25 mg/mL of pcDNA3.1-CaSR and
50 nM NC-siRNA, Rac1-siRNA, or PLC-g1-siRNA for 48 h in a
10% FBS medium, and then treated with ETEC K88 for 2 h in 2%
FBS medium without antibiotics. (4) The cells were pre-incubated
with 50 nM NC-siRNA, Rac1-siRNA, or PLC-g1-siRNA for 12 h,
followed by 0.7 mM tryptophan for 48 h, and then they
were treated with ETEC K88 for 2 h in 2% FBS medium
without antibiotics.

TEER and Permeability Assay
The TEER and FD4 flux of porcine intestinal epithelial cells were
detected according to the method of a previous study (36).
Briefly, the IPEC-J2 cells (5 × 105/mL) were seeded in 12-well
transwell insert (1.12 cm2, 0.4 mm) with collagen-coated PTFE
membrane (Corning Inc., NY, USA) with 0.5 mL of 10% FBS
medium in transwell inserts and 1.5 mL of 10% FBS medium in
the plate well. The medium was replaced daily. When the TEER
values reached a plateau, the IPEC-J2 cells were considered to
form a monolayer. Then, cells were washed with PBS and treated
with different reagents. IPEC-J2 cells in each transwell insert
membrane were incubated with different reagents at 37°C for the
indicated time and treated with 10 mL of FITC-dextran 4 kDa
(10 mg/mL) for 2 h. About 200 mL of the basal medium was
utilized for fluorescence analysis in a microplate fluorescence
reader (emission, 528 nm; excitation, 485 nm, SpectraMax M2,
Molecular Devices, China). The concentrations of FITC-dextran

TABLE 1 | Q10Sequence of siRNA.

Gene names Sequence

PLCg1-siRNA sense 5′-CCAGAAGUGCGACACCAUUTT-3′
antisense 5’-GCCCTCTGGGTATGGCTTTC-3’

Rac1-siRNA sense 5’- CCAAGGAUCUGAAGAACAUTT-3’
antisense 5’- AUGUUCUUCAGAUCCUUGGTT-3’

NC-siRNA sense 5’-UUCUCCGAACGUGUCACGUT-3’
antisense 5’-ACGUGACACGUUCGGAGAATT-3’
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were determined via standard curves generated using serial
dilution of FITC-dextran.

Real-Time PCR
The PCR experimental procedure was carried out as previously
described (37). Briefly, total RNA from IPEC-J2 cells was
extracted by TRIzol reagents (TaKaRa, Chengdu, China). One
microliter of total RNA was reverse transcribed to cDNA using
the PrimeScript RT reagent Kit (TaKaRa, Chengdu, China) with
gDNA Eraser (TaKaRa, Chengdu, China). Samples were run on a
real-time PCR system (ABI 7900HT, Applied Biosystems) using
SYBR Premix Ex Taq II (TaKaRa, Dalian, China), and the total
volume of the system was 10 mL. Samples were thermocycled
using the program (41 cycles of 95°C for 10 s, 58°C for 35 s),
followed by a melting curve program (65°C for 5 s, 95°C for 15 s),
and all PCR reactions were run in triplicate. The gene primers
used are listed in Table S1. The relative mRNA expression of
Rac1, PLC-g1, and CaSR was calculated using the 2−DDCt method.

Enzyme-Linked Immunosorbent Assay
(ELISA)
ELISA was performed as previously described (37). Briefly,
cells were dissolved in RIPA buffer containing 1 mM
phenylmethylsulfonyl fluoride (PMSF), and then were sonicated
and centrifuged at 4°C. The protein concentration of occludin,
zonula occludens 1 (ZO-1), claudin-1, CaSR, total Rac1, Rho family
member 1 of porcine GTP binding protein (GTP-rac1),
phosphorylated phospholipase Cg1 (p-PLC-g1), inositol
triphosphate (IP3), IL-8 and tumor necrosis factor-alpha (TNF-a)
were determined using ELISA kit (Mlbio, Shanghai, China).

Statistical Analysis
All data was analyzed by one-way analysis of variance (ANOVA)
followed by Duncan’s multiple range test using SPSS 21.0
software (SPSS Inc., Chicago, IL, USA). The homogeneity of
variances was evaluated by Levene’s test. All results were

represented as mean ± standard error of mean (SEM). The
significance of differences among treatments were identified at
P-value <0.05.

RESULTS

Tryptophan Improved TEER and
Decreased Permeability in Porcine
Intestinal Epithelial Cells Challenged
With ETEC K88
The IPEC-J2 cell monolayer was investigated for epithelial
barrier function in response to ETEC K88 infection in the
absence or presence of different doses of tryptophan (0.3 and
0.7 mM). Compared with the control group, IPEC-J2 cells
treated with ETEC K88 alone showed a spontaneous decrease
in TEER value and a significant increase in permeability of FITC-
dextran (P < 0.05, Figures 1A, B). Pretreatment with tryptophan
(0.3 and 0.7 mM) reversed the ETEC K88-induced reduction of
TER value (compared with 0.3 and 0.7 mM tryptophan-treated
cells) (P < 0.05, Figures 1A, B). Moreover, treatment with 0.3
and 0.7 mM tryptophan significantly increased the TEER and
significantly decreased the permeability of FITC-dextran in
IPEC-J2 cell monolayers after 48 h (compared with untreated
cells) (P < 0.05, Figures 1A, B). The best protective effect of
tryptophan on TEER and permeability was obtained at 0.7 mM
concentration. Therefore, we used 0.7 mM tryptophan in
subsequent research.

A B

FIGURE 1 |Q9 Effect of ETEC K88 and tryptophan (0.3 and 0.7 mM) on the transepithelial electrical resistance and permeability in IPEC-J2 cells. (A) Effect of ETEC
K88 and tryptophan on the transepithelial electrical resistance value. (B) Effect of ETEC K88 and tryptophan on the permeability of FITC-dextran. IPEC-J2 cells were
cultured in fetal bovine serum-free medium for 6 h The serum-starved IPEC-J2 cells were pre-treated or not with tryptophan (0.3, 0.7 mM) for 48 h, before
challenging or not with ETEC K88 (K88) for 2 h (2% fetal bovine serum DMEM/F12 medium without antibiotic, 1×108 CFU/mL). The TEER value and the permeability
of all treatments were normalized to control. Data values are indicated as mean ± SEM (n = 3). Values with different letters indicate significant difference (P < 0.05).
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Rac1/PLC-g1 Signaling Pathway
Contributes to Tryptophan-Induced
Upregulation of TEER and Downregulation
of Permeability and Inflammatory
Response in Porcine Intestinal
Epithelial Cells
To explore the molecular mechanism by which tryptophan
regulates intestinal barrier integrity, IPEC-J2 cells were transfected
with Rac1-siRNA or PLC-g1-siRNA for 24 h before the addition of
tryptophan (0.7 mM). Then, the cells were challenged with ETEC
K88 for 2 h. The results showed that Rac1-siRNA and PLC-g1-
siRNA significantly decreased Rac1 and PLC-g1 mRNA expression,
respectively (P < 0.05, Figures S1A, B). Treatment with 0.7 mM
tryptophan significantly increased the TEER and significantly
decreased the permeability of FITC-dextran and contents of IL-8
and TNF-a in IPEC-J2 cell monolayers compared with untreated
cells (P < 0.05, Figures 2A–D). Compared with the control group,

ETEC K88 suppressed the TEER, enhanced the permeability of
FITC-dextran, and improved the contents of IL-8 and TNF-a (P <
0.05, Figures 2A–D). Compared with cells treated with 0.7 mM
tryptophan alone, cells treated with 0.7 mM tryptophan + ETEC
K88 showed decreased TEER, increased permeability of FITC-
dextran, and enhanced contents of IL-8 and TNF-a (P < 0.05,
Figures 2A–D). In addition, compared with treatment with 0.7 mM
tryptophan + ETEC K88, Rac1-siRNA or PLC-g1-siRNA inhibited
the tryptophan-induced upregulation of TEER and downregulation
of FITC-dextran permeability and IL-8 and TNF-a contents in
IPEC-J2 cells challenged with ETEC K88 (P < 0.05, Figures 2A–D).
Taken together, the results suggest that the regulation of TEER,
permeability, and inflammatory response by tryptophan is
dependent on the Rac1/PLC-g1 signaling pathway.

A B

C D

FIGURE 2 | Rac1-siRNA, PLC-g1-siRNA attenuated the effect of tryptophan (0.7mM) on transepithelial electrical resistance, permeability, and proinflammation
cytokines (IL-8 and TNF-a) in ETEC K88-stimulated IPEC-J2 cells. About 70% confluent, IPEC-J2 cells were cultured in fetal bovine serum-free medium for 6 h and
then transfected with 50 nM of NC-siRNA, Rac1-siRNA or PLCg1-siRNA for 24 h, followed by treatment with tryptophan (0.7mM) for 48 h, and then treatment with
ETEC K88 for 2h (2% FBS-medium without antibiotic, 1×108 CFU/mL). (A) Effect of ETEC K88 and Rac1-siRNA, PLC-g1-siRNA on the transepithelial electrical
resistance value. (B) Effect of ETEC K88 and Rac1-siRNA, PLC-g1-siRNA on the permeability of FITC-dextran. (C) Effect of ETEC K88 and Rac1-siRNA, PLC-g1-
siRNA on the contents of IL-8. (D) Effect of ETEC K88 and Rac1-siRNA, PLC-g1-siRNA on the contents of TNF-a. NC-siRNA was added to control, tryptophan and
ETEC K88 groups. The TEER value and the permeability of all treatments were normalized to control. Data values are indicated as mean ± SEM (n = 3). Values with
different letters indicate significant difference (P < 0.05).
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Inhibition of CaSR by NPS2143 Disrupts
the Effect of Tryptophan on TJ,
Inflammatory Response, TEER, and
Permeability in ETEC K88-Challenged
IPEC-J2 Cells
Compared with ETEC K88, ETEC K88+tryptophan increased the
protein concentrations of occludin, ZO-1, claudin-1, and CaSR,
but this effect was inhibited by NPS2143 (P < 0.05, Figures 3A–D).
Tryptophan+ETEC K88+NPS2143 significantly reduced the
protein concentrations of occludin, ZO-1, claudin-1, and CaSR
compared with tryptophan+ETEC K88 (P < 0.05, Figures 3A–D).
Treatment with 0.7 mM tryptophan significantly increased the
TEER and significantly decreased the permeability of FITC-
dextran in IPEC-J2 cell monolayers compared with untreated
cells (P < 0.05, Figures 4A, B). Compared with the control
group, treatment with ETEC K88 significantly decreased

the TEER and increased the permeability of FITC-dextran in
IPEC-J2 cells (P < 0.05, Figures 4A, B). Moreover, treatment with
0.7 mM tryptophan+ETEC K88 significantly decreased the TEER
and increased the permeability of FITC-dextran compared with
0.7 mM tryptophan alone (P < 0.05, Figures 4A, B). In the
tryptophan+ETEC K88+NPS2143 group, the TEER was
significantly reduced, and the permeability of FITC-dextran was
significantly increased compared with the tryptophan+ETEC K88
group (P < 0.05, Figures 4A, B).

As shown in Figures 5A, B, ETEC K88 significantly decreased
the contents of IL-8 and TNF-a in IPEC-J2 cells compared with the
control group. Compared with the control group, cells treated with
tryptophan had decreased IL-8 and TNF-a contents. Compared
with cells treated with tryptophan alone, cells treated with
tryptophan+ETEC K88 showed increased contents of IL-8 and
TNF-a. However, the incubation of IPEC-J2 cells with NPS2143
reversed the effects of tryptophan on IL-8 and TNF-a contents.

A B

C D

FIGURE 3 | NPS2143 attenuated the effect of tryptophan (0.7mM) on the protein concentration of occludin, ZO-1, claudin-1 and CaSR in ETEC K88-stimulated IPEC-J2
cells. About 70% confluent, IPEC-J2 cells were cultured in fetal bovine serum-free medium for 6 h, and pre-treated with 6mM NSP 2143 or 0.1% of DMSO and for 1
hour, followed by treatment with 0.7 mM tryptophan for 48 h, and then challenged or not with ETEC K88 for 2 h (2% fetal bovine serum-medium without antibiotic,
1×108 CFU/mL). (A) CaSR inhibitor NPS2143 attenuated the effect of tryptophan on the protein concentration of claudin-1 in ETEC K88-stimulated IPEC-J2 cells.
(B) NPS2143 attenuated the effect of tryptophan on the protein concentration of ZO-1 in ETEC K88-stimulated IPEC-J2 cells. (C) NPS2143 attenuated the effect of
tryptophan on the protein concentration of occludin in ETEC K88-stimulated IPEC-J2 cells. (D) NPS2143 attenuated the effect of tryptophan on the protein concentration
of CaSR in ETEC K88-stimulated IPEC-J2 cells. Data values are expressed as mean ± SEM from four independent experiments (n = 4). Values with different letters
indicate significant difference (P < 0.05).
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CaSR Is Required for Tryptophan-Induced
Rac1/PLC-g1 Signaling Activation
The protein concentrations of total Rac1, Rho family member 1 of
porcine GTP-binding protein (GTP-rac1), and phosphorylated
phospholipase Cg1 (p-PLC-g1) and the contents of inositol
triphosphate (IP3) were increased by 0.7 mM tryptophan
compared with the control group (P < 0.05, Figures 6A–D).
Compared with the control group, ETEC K88 decreased the
protein concentrations of total Rac1, GTP-rac1, and p-PLC-g1
and the contents of IP3 (P < 0.05, Figures 6A–D). Compared with
tryptophan+ETEC K88, NPS2143+tryptophan+ETEC K88
inhibited the increase in protein concentrations of total Rac1,
GTP-rac1, and p-PLC-g1 and IP3 contents induced by tryptophan,
indicating that the CaSR inhibitor attenuated tryptophan-induced
Rac1/PLC-g1 signaling activation (P < 0.05, Figures 6A–D).
Compared with pcDNA3.1(+), pcDNA3.1(+)-CaSR-WT

significantly increased CaSR mRNA expression (P < 0.05,
Figure S2). Moreover, compared with the control group, ETEC
K88+NC-siRNA+pcDNA3.1(+) treatment significantly reduced
the TEER value and enhanced the permeability of FITC-dextran
in IPEC-J2 cells. However, pcDNA3.1-CaSR-WT+NC-siRNA
treatment significantly increased the TEER value and decreased
the permeability of FITC-dextran (P < 0.05, Figures 7A, B).
Compared with ETEC K88-treated cells, pcDNA3.1-CaSR-WT
increased the TEER value and reduced the permeability of FITC-
dextran in ETEC K88-treated cells (P < 0.05, Figures 7A, B).
Compared with pcDNA3.1-CaSR-WT+NC-siRNA+ETEC K88,
pcDNA3.1-CaSR-WT+Rac1-siRNA+ETEC K88 and pcDNA3.1-
CaSR-WT+PLC-g1-siRNA+ETEC K88 decreased the TEER value
and enhanced the permeability of FITC-dextran in IPEC-J2 cells
(P < 0.05, Figures 7A, B).

A B

FIGURE 4 | Effect of NPS2143 inhibiting the tryptophan (0.7mM) on the transepithelial electrical resistance and permeability in ETEC K88-stimulated IPEC-J2 cells.
The cells were seeded on (5×105/ml) collagen-coated 12-well transwell insert, and after reaching confluence, IPEC-J2 cells were cultured in fetal bovine serum-free
medium for 6 h, and pre-treated with 6mM NSP 2143 or 0.1% of DMSO and for 1 hour, followed by treatment with 0.7 mM tryptophan for 48 h, and then challenged
or not with ETEC K88 for 2 h (2% fetal bovine serum-medium without antibiotic, 1×108 CFU/mL). (A) Effect of NPS2143 and tryptophan on the transepithelial
electrical resistance value after stimulation with ETEC K88. (B) Effect of NPS2143 and tryptophan on the permeability of FITC-dextran after stimulation with ETEC
K88. The TEER value and the permeability of all treatments were normalized to control. Data values are expressed as mean ± SEM (n = 3). Values with different
letters indicate significant difference (P < 0.05).

A B

FIGURE 5 | Effect of NPS2143 and tryptophan (0.7mM) on the contents of IL-8 and TNF-a in ETEC K88-stimulated IPEC-J2 cells. IPEC-J2 cells were treated as described
in Figure 3. (A) Effect of NPS2143 and tryptophan on the IL-8 contents in ETEC K88-stimulated IPEC-J2 cells. (B) Effect of NPS2143 and tryptophan on the TNF-a contents
in ETEC K88-stimulated IPEC-J2 cells. Data values are expressed as mean ± SEM (n = 3). Values with different letters indicate significant difference (P < 0.05).
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A B

C D

FIGURE 6 | Effect of tryptophan (0.7mM) and NPS2143 on the protein concentration of total Rac1, GTP-rac1, p-PLC-g1 and contents of IP3 in ETEC K88-
stimulated IPEC-J2 cells. IPEC-J2 cells were treated as described in Figure 3. (A) The protein concentration of total Rac1, (B) GTP-rac1, (C) p-PLC-g1 and (D) the
contents of IP3 were determined by ELISA kit. Data values are expressed as mean ± SEM from four independent experiments (n = 4). Values with different letters
indicate significant difference (P < 0.05).

A B

FIGURE 7 | Effect of pcDNA3.1-p(CaSR), Rac1-siRNA, PLC-g1-siRNA and ETEC-K88 on transepithelial electrical resistance and permeability in IPEC-J2 cells. The
IPEC-J2 cells were transfected with pcDNA3.1-p(CaSR), NC-siRNA, Rac1siRNA or PLC-g1 siRNA for 48 h, followed by ETEC K88 (2% fetal bovine serum DMEM/
F12 medium without antibiotic, 1×108 CFU/mL) for 2h. In control and ETEC K88 groups, cells were transfected with NC-siRNA and pcDNA3.1(+). In pcDNA3.1-
CaSR-WT+ ETEC K88 groups, cells were transfected with NC-siRNA. (A) Effect of ETEC K88, pcDNA3.1-p(CaSR), Rac1siRNA and PLC-g1 siRNA on the
transepithelial electrical resistance value after stimulation with ETEC K88. (B) Effect of ETEC K88, pcDNA3.1-p(CaSR), Rac1-siRNA and PLC-g1-siRNA on the
permeability of FITC-dextran after stimulation with ETEC K88. The TEER value and the permeability of FITC-dextran of all treatments were normalized to control. Data
values are expressed as mean ± SEM (n = 3). Values with different letters indicate significant difference (P < 0.05).
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DISCUSSION

Different cytokines can modify the junctional complex. The
proinflammatory roles of TNF-a and IL-8 were linked with
ETEC and increased intestinal permeability (38). Thus, TNF-a
and IL-8 parameters were selected in this study. We found that
ETEC K88 enhanced the contents of TNF-a and IL-8, which is in
agreement with a previous article that ETEC K88 induced
intestinal proinflammatory response in pigs (8). The TEER and
flux of FITC-dextran indirectly reflect the TJs of intestinal
epithelial cells and the paracellular permeability of the
intestinal epithelium, respectively. Consistent with the above-
mentioned finding, ETEC K88 significantly decreased the TEER
values and increased the permeability of FITC-dextran in ETEC
K88-challenged IPEC-J2 cells, which suggests that the cell
damage model was successfully constructed. In this study,
tryptophan significantly decreased the contents of TNF-a and
IL-8 in ETEC K88-challenged IPEC-J2 cells, suggesting that
tryptophan can attenuate ETEC K88-induced proinflammatory
response. This finding is in line with that of a previous study,
which showed that tryptophan reduced the gene expression of
IL-8 and IL-1b in the gut (21). Proinflammatory cytokines have
been related to pathogen-induced alteration of TJ proteins (39).
Here, tryptophan (0.7 mM) increased the protein concentrations
of occludin, ZO-1, and claudin-1 in ETEC K88-challenged and
non-challenged IPEC-J2 cells. These findings were consistent
with previous studies on pigs (40), Caco-2 cells, and IPEC-1 cells
(18, 19). The current study also demonstrated that tryptophan
(0.3 and 0.7 mM) significantly increased the TEER values and
decreased the permeability of FITC-dextran in ETEC K88-
challenged IPEC-J2 cells. Taken together, our results suggested
that tryptophan can improve intestinal barrier integrity and
decrease proinflammatory response.

The regulation of intestinal barrier integrity and
proinflammatory response is complex, involving numerous
intracellular molecular signaling and kinases, such as CaSR, PLC
signaling, and RHO kinase. These molecules regulate TJ protein
expression, TJ assembly, and redistribution by phosphorylation
(41–44). CaSR signaling regulates the TEER in the intestine of
mice, TJ protein expression, and proinflammatory immune
response (21, 26). We found that NPS2143 reversed the
enhancement effect of tryptophan on the protein concentrations
of ZO-1, occludin, claudin-1, and CaSR and the TEER and
decrease of permeability and IL-8 and TNF-a contents. The
overexpression of pcDNA3.1-p(CaSR) markedly increased the
TEER and decreased the permeability of FITC-dextran. Taken
together, these results suggested that tryptophan protects
intestinal epithelial barrier integrity and alleviates intestinal
inflammation though CaSR signaling. The Rho family of small
guanosine triphosphatases, such as Rho, Cdc42, and Rac1, has
been reported to regulate the composition and function of TJs
(45–48). The PLC-dependent pathway has been demonstrated in
the assembly of TJs in MDCK cells (49, 50). In this study, we
found that Rac1-siRNA+tryptophan+ETEC K88 or PLC-g1-
siRNA+tryptophan+ETEC K88 reduced the TEER, increased the
permeability of FITC-dextran, and enhanced the contents of IL-8
and TNF-a compared with tryptophan+ETEC K88. Collectively,

these results suggested that tryptophan can improve intestinal
barrier integrity and decrease proinflammatory response at least
partly through Rac1/PLC-g1 signaling in intestinal epithelial cells.
The effects of CaSR on the mRNA expression of inflammatory
cytokines and intestinal barrier integrity are associated with two
downstream effectors Rac1 and PLC-g1 (28, 30). In the present
study, our results showed that tryptophan+ETEC K88+NPS2143
decreased the protein concentrations of GTP-rac1, total Rac1, and
p-PLC-g1 and contents of IP3 compared with tryptophan+ETEC
K88. Furthermore, we found that the inhibition of Rac1 or PLC-g1
by Rac1-siRNA and PLC-g1-siRNA significantly reduced the
TEER and increased the permeability of FITC-dextran in cells
treated with pcDNA3.1-p(CaSR) and ETEC K88. These results
were consistent with those of previous reports, indicating that
tryptophan can enhance IPEC-J2 cell migration through the
CaSR/Rac1/PLC-g1 signaling pathway (24). Taken together,
these results suggest that CaSR is required for tryptophan-
induced activation of Rac1/PLC-g1 signaling, which increases
intestinal epithelial TJ and decreases intestinal epithelial
permeability and inflammatory response in IPEC-J2 cells after
ETEC K88 challenge.

Collectively, the results suggest that tryptophan can improve
intestinal epithelial barrier integrity and decrease inflammatory
response through the CaSR/Rac1/PLC-g1 signaling pathway.
This study not only offers new insights into the function of
tryptophan, but also indicates the necessity for further
investigating the effect of tryptophan on intestinal health in vivo.
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